If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+5x-6.25=0
a = 3; b = 5; c = -6.25;
Δ = b2-4ac
Δ = 52-4·3·(-6.25)
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-10}{2*3}=\frac{-15}{6} =-2+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+10}{2*3}=\frac{5}{6} =5/6 $
| (1/4)^2b=64 | | 5x-2=5x-10 | | -3(x+2)=-3+6 | | 5-(1/2)(x-6)=4 | | e²=20 | | 2•4x-14=66 | | 8+y/2.56=10 | | 6n+1+7=14 | | 2x3-13=5 | | -32=-4x+8-8 | | 17x-37=90 | | 5-2x+8=253x | | 4^x+2^(x-3)=3^2/2^3 | | X=51,y= | | 20f+8=8 | | Y=15+x/3 | | 2.5x-100=237.50 | | 2x+1)+3=7 | | 3x-10=45+2x+10 | | 2x+3+3x=3+5x | | 6x-10+38+251/3=7x+18 | | 2(k+9)−–1=7 | | 6x-10+38=180 | | 2x+7+26=6x-7 | | X=11/x+10 | | -4(u+$)=3(u+4)+7 | | -4u-46=2(u+1) | | -2(y-2)=-5y+16 | | 49*x=98 | | 4w+4(w+2)=-24 | | 4(x-7)-7x=-34 | | 10*x=620 |